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Rate of Convergence of Discretization 
in Chebyshev Approximation 

By C. B. Dunham and Jack Williams 

Absact. The paper treats, in a particularly simple fashion, the practical problem of the rate 
of convergence of discretization in real and complex Chebyshev approximation. Both linear 
and nonlinear approximations are discussed and, subject to certain conditions, quadratic 
convergence of the discretizations is obtained along with an explicit rate constant which can 
be estimated numerically. 

1. Introduction. In their paper [4], Ellacott and Williams consider the problem of 
complex linear Chebyshev approximation involving discretization of a Jordan 
curve C, where C consists of a finite number of smooth arcs. Specifically, let f, 
41' 42 .. . , cn be complex-valued continuous functions on C, where {Ao} forms a 
basis for a subspace P. With 11 gll = maxzECl g(z)l, we seekp* E P for which 

jlf-p*jj < Ilf-pll for allp E P. 
It is known that a best approximationp* exists, and if P is a Haar space, thenp* is 
unique [5, Chapter 2]. As remarked in [4], approximation on the region enclosed by 
C to those functions which are analytic there can be replaced by approximation on 
C. 

In this note we are concerned with the case (of considerable practical interest) 
where the above problem is approached by replacing C by a compact subset 
Zk c C and determining a best approximation Pk to f on Zk. We then need to 
investigate to what extent the solution of this "descretized" problem approximates 
the solution of the original problem. When Zk is a finite point set, an algorithm for 
computing Pk is described in [4]. 

2. Discretization Theory. In [4] the authors measure the quality of approximation 
in terms of I(Pk), where 

k(Pk) = Ilf - p*I - max lf(z) - Pk(z)i 
z e- Zk 

For practical purposes this does not provide complete information since the 
resulting approximation pk is used to approximatef on C where its error is given by 
lIf - Pkl. Hence a more satisfactory measure of the accuracy of the discretization 
process is given by 

P(Pk) =lf IfPkll - lf P*11; 
this quantity was introduced by Dunham [3e]. Suppose now thatp* is a unique best 
approximation to f. Then, by a simple modification of the argument presented in 
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Theorem 2.2 of [4], we obtain, subject to reasonable smoothness conditions, 
quadratic convergence to zero of P(Pk). 

THEOREM. Let C := {z: z = y(t), t E [0, 1], y(O) = y(l)) be a piecewise smooth 
Jordan curve consisting of the smooth arcs Cr, r = 1, 2, .. , M, and let f and {fi) be 
twice continuously differentiable on each arc Cr. Let Zk Zk(t) c C, k = 
1, 2, . . . , be a sequence of finite point subsets which each contain all the points of 
discontinuity of dy(t)/dt, t E [0, 1]. If 

IZkl = max min d(y(tl), y(t2)) 
y(t2) EC -y(t1) EZk 

satisfies IZk 0 as k -* oo, where 

d(y(t1), y(t2)) = min{ItI - t21, 1 - ItI -t2 

then there exists a positive constant K such that, for k = 1, 2, . . .. 

(2.1) P(Pk ) < K | k12| 

where Pk is a best approximation to f on Zk 

Proof. We consider Zk c C and let h(z) = If(z) - Pk(Z)12. Then, defining R = 

Re(f - Pk), I = Im(f - Pk), we have on C the functions 

h = R2 + I2, h' = 2[RR' + II'], 

h" = 2[(R')2 + RR" + (j,)2 + II"], 

where differentiation is with respect to t. By examining the maximum of h(y(t)) on 
C and applying Taylor's theorem up to second derivatives, we obtain, as in [4], 
their inequality (2.1) 

If - PkII2 max If(Z) -Pk(Z)I + I QkIZkI, 
z E Zk2 

where Qk = supld2h(y(t))/dt2I, and the supremum is taken over y(t) E Cr, r = 

1, 2, ... , M. Hence, 

Ilf - PkII2 _- If - p*112 f(z) -pk(z)12 If - p*112 + 2QkIZkIl z E2 Zk 
2 

1 ~QkIZ 12. 
Therefore, 

P(Pk) < QkIZk 1/2(If PkII + lf - p*11) < QkIZkI2/411f P 11 
But, since Pk P* as k s-> o [2, Chapter 3], we have, for all k, Qk < Ko for some 
constant Ko, and the result follows. 

Remark. The theorem also holds if Zk, k = 1, 2, .. ., are closed. 
It is clear that the above theory can easily be adapted to treat real linear 

approximation on a real interval C _ [a, b]. In this case it is sufficient to have the 
points a and b contained in Zk for each k = 1, 2, ... ; for practical approximation 
problems this is a natural requirement. Most important is the fact that, subject to 
certain conditions, it can also be applied to nonlinear, real or complex, Chebyshev 
approximations. For suppose V is a class of approximating functions of the form 
F(a, z), where a = (a,, a2, ... ., an), and is restricted such that V consists of 
continuous functions on C. As is clear from the above proof, the critical require- 
ment, apart from smoothness, is that the quantities { Qk are uniformly bounded; 
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in the linear case this follows from the uniform boundedness of the coefficients of 

{Pk). Starting with the hypothesis that the best approximations F(ak, z) E V on Zk 

exist and converge uniformly to F(a*, z), the best approximation on C, it is 
sufficient to assume that the first and second derivatives (with respect to t) of the 
real and imaginary parts of F(ak, z), z = y(t) E Cr, r = 1, 2, ... ., M, are uni- 
formly bounded. Uniform boundedness of Qk then follows directly. As an example, 
consider real approximation by generalized rational functions 

n m 

p/q = E a4if(x)/ E a.+i4i,(x) 
i=l i=l 

on C a real interval [a, b]; we require 
Assumption. f has a unique best approximation p*/q* on C; p*/q* has a unique 

representation under the normalization ' 
11a,,il = 1 and q* > 0 on C. Also, for 

k = 1, 2, .. ., a, b E Zk. From [3f] a best approximationpk/qk exists on Zk for k 
sufficiently large and Pk -P*, qk > q* as k -* oo. Hence (subject to appropriate 
differentiability of the {*1(x)} and {i4'(x))), examining the expressions for (pk/qk)' 

and (pk/qk)", it easily follows that the quantity Qk (contained in the proof of the 
above theorem) tends to a limit, and the result (2.1) holds. 

In general, however, we note that uniform convergence of F(ak, z) -4 F(a*, z) 
cannot be guaranteed even if a best approximation F(a*, z) is unique; see for 
example [3a], [3b], [3d] for real nonlinear approximation and apply the results of 
Saff and Varga [6] for when best real rational approximations are best complex 
rational approximations. In practice, the corresponding functions f, for which this 
uniform convergence does not occur, may be unusual. In particular, for alternating 
approximation, the best approximation is degenerate [3c, Theorem 6] and the set of 
suchf may be nowhere dense [3c, Theorem 9]. 

Returning to the linear case, for many practical approximation problems, the 
measure of approximation given by P(Pk) is usually sufficient, yet, even if the result 
(2.1) holds, it is possible that, with respect to the density IZkl, we have the 
equivalent phenomenon: 

(i) the coefficients of Pk do not converge quadratically to the coefficients of p* as 
k -> o, 

(ii) IIpk - p*I does not converge quadratically to zero as k - oo. 
Example. Consider the example of real approximation given in Cheney's text [2, 

p. 82] where f(x) = x2 - 1, C = [-1, 1], and the approximating functions are of the 
form p = ax, a E R. Cheney shows that p* 0 is the unique best approximation 
to f on C; in fact, if lal < 1, then the maximum of If(x) - axI occurs at a/2 and 
has the value 1 + a2/4. Let Zk := [-1, -2/k] U [1/k, 1], k = 2, 3, .... Then, 
since the function x satisfies the Haar condition on each Zk' best approximations 
on Zk are unique. Applying Komogorov's characterization theorem [5, Chapter 2] 
yields that pk is best on Zk if and only if sign(x)[f(x) - ax] alternates at least once 
on Zk from which it can easily be calculated (with the aid of a sketch) that 

Pk = -x/k; the extremal set consists of the two inner "end" points -2/k and 1/k. 
Hence, If - p*I1 = 1, Ilf - pkll = 1 + 1/4k2, and IIPk - p*11 = 1/k; since IZkl = 

3/2k, the result (2.1) is satisfied subject to the above behavior (i) and (ii). Making 
Zk a finite subset with the same endpoints does not change the results. As a best 
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real linear approximation is also a best complex linear approximation (6], the above 
example applies to complex approximation as well. 

If p* is a strongly unique best approximation to f, that is, there exists a constant 
y > 0 such that 

Ilf - pi- - IIf P*II > YIIP - P*II VP E P, 
then, clearly, - pk-p*II tends to zero at least as fast as P(Pk) since 

IlPk - P*|| 6 P(Pk)/Y. 

The above example shows that forp* merely unique a slower rate of convergence is 
possible. Also, the example of Dunham [3e] shows that the order of convergence in 
(2.1) cannot be improved by further smoothness hypotheses. For a treatment of the 
rate of convergence in Chebyshev approximation which employs strong uniqueness 
(real and complex case) see Chalmers [1] and the associated references for work on 
strong uniqueness. 

Finally, it is important to note (as mentioned in [41) that, because of its explicit 
nature, the rate constant K occurring in (2.1) can in practice be estimated 
numerically. To see this we first observe from the proof that 

P(Pk) < 
4Qkf - p lZkl 

In a practical situation it is, of course, the relative size of P(Pk) which is of 
importance; agreement of If - pk with IIf - p* to two or three figures being 
good enough for many problems. Now 

P(Pk) < Qk 2 

lIf P* i 4 max If(z) -p*(Z)12 
(2.2) 

< ~~Qk I 2 

4 max I f(z) -p()2IkI 
z E Zk 

Now Qk can be estimated with the aid of simple difference approximations to 
d2h/dt2 on each Cr, r = 1, 2, ... , M, and, since pk(z) has been computed, its 
maximum error on Zk is immediately available. Hence, on the basis of an estimate 
for the bound (2.2), it would be possible to decide if Pk is an acceptable replace- 
ment of p* and if not a new point set Zk should be selected for which lZkI is 
correspondingly reduced. Many discretization results do not give any explicit rate 
constants; see, for example, [1]. We observe, however, that in general the rate 
constant occurring in (2.2) is not asymptotically correct (due to the simple inequali- 
ties used in its construction). Applying (2.2) to the given example of real approxi- 
mation, we obtain 

P(Pk) = 1/4k2, lIf - P*I = 1, 

max If(Z) - pk(z)2 = (1 -2/k2), 
Z EE Zk 

12 2 2 
Qk = 8 + + -j (computed exactly), J74j2 - 9/4k . 
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Hence (2.2) yields the upper bound 

221 + -+4 2)( 
I 

)2 2k 2 ( 2k +4k 2 )1 k2) 

The value of p(pk)/Ilf - p*11 is 1/4k2. 
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